1702. Counting Divisors

时间限制 5000 ms   内存限制 512 MB

In mathematics, the function $d(n)$ denotes the number of divisors of positive integer $n$.

For example, $d(12)=6$ because $1,2,3,4,6,12$ are all $12$'s divisors.

In this problem, given $l,r$ and $k$, your task is to calculate the following thing :

\begin{eqnarray*}
\left(\sum_{i=l}^r d(i^k)\right)\bmod 998244353
\end{eqnarray*}

输入数据

The first line of the input contains an integer $T(1\leq T\leq15)$, denoting the number of test cases.

In each test case, there are $3$ integers $l,r,k(1\leq l\leq r\leq 10^{12},r-l\leq 10^6,1\leq k\leq 10^7)$.

输出数据

For each test case, print a single line containing an integer, denoting the answer.

样例输入

复制
3
1 5 1
1 10 2
1 100 3 \n
 · · \n
 ·  · \n
 ·   · \n

样例输出

复制
10
48
2302  \n
  \n
    \n

提交

请先 登录

Source

2017 Multi-University Training Contest - Team 4

© 2025 FAQs Contact About