1746. All Kill

时间限制 4000 ms   内存限制 512 MB

Give nonnegative integers $x_{1...n}$ which are less than $32677$, calculate $y_{i,j}=x_i\times x_j\mod32677$. HazelFan wants to know how many sextuples $(a,b,c,d,e,f)$ are there, satisfies $\gcd(y_{a,b},y_{c,d})=\gcd(y_{c,d},y_{e,f})=\gcd(y_{e,f},y_{a,b})=1$, module $2^{30}$.

输入数据

The first line contains a positive integer $T(1\leq T\leq5)$, denoting the number of test cases.
For each test case:
The first line contains a positive integer $n(1\leq n\leq2\times10^5)$.
The second line contains $n$ nonnegative integers $x_{1...n}(0\leq x_i<32677)$.

输出数据

For each test case:
A single line contains a nonnegative integer, denoting the answer.

样例输入

复制
2
1
1
5
1 2 3 4 5 \n
 \n
 \n
 \n
 · · · · \n

样例输出

复制
1
1087 \n
    \n

提交

请先 登录

Source

2017 Multi-University Training Contest - Team 7

© 2024 FAQs Contact About