1785. Function Counting

时间限制 2000 ms   内存限制 150 MB

In this problem, we count the number of function f(x) satisfies below details.
1.f: MM, ( M={-n,-n+1,-n+2,...,-1,0,1,...,n} )
2.$\forall x∈M, f_k (x)= -x,( f_0 (x)=x,f_i= f(f_{i-1} ) (i= 1,2,...) )$
3.$\forall x∈M, |(|f(x)|-|x|)|<=2$

输入数据

The first line of input contains an integer T (1 <= T <= 100) , the number of test cases.
Each test case contains a pair of integers n, k (n * k <= $10^9$), the upper limit of the set M and degree of f.
The total sum of n * k over all test cases does not exceed 4e9.

输出数据

For each test case output the answer % 1000000007.

样例输入

复制
7
1 1
2 1
100 1
1 2
2 2 
3 2
20 4 \n
 · \n
 · \n
   · \n
 · \n
 · \n
 · \n
  · \n

样例输出

复制
1
1
1
0
2
0
1048576
 \n
 \n
 \n
 \n
 \n
 \n
       \n

样例说明

If k = 1, only one function f(x) = -x exists.

If n = k = 2, two functions exist. f: (-2, -1, 0, 1, 2) -> (1, -2, 0, 2, -1) or (-1, 2, 0, -2, 1).


提交

请先 登录

Source

2017 Multi-University Training Contest - Team 10

© 2024 FAQs Contact About