小卷卷隔壁的班级一共有 $n$ 人,其中有 $m$ 对人互为微信好友。如果把人看成点,并将是微信好友的两个人之间连一条无向边,那么这将构成一张 $n$ 个点 $m$ 条边无向图 $G$,并且没有重边和自环。
这一天,小卷卷在学习的时候突然发现了一个秘密,隔壁班有些人的真实身份是小丑!并且这些小丑想要同化隔壁班所有人。"小丑竟在我身边!",小卷卷突然说道。
具体而言,隔壁班的每一个人的真实身份有两种,小丑和普通人。如果隔壁班的小丑和普通人满足以下条件,那么隔壁班就会被全部同化:
但每个人的真实身份是隐藏起来的,小卷卷想知道,如果仅凭图 $G$ 来看,是否存在某种情况,使得隔壁班可以被全部同化。
第一行为两个整数 $n,m(1 \leq n \leq 10^{4}, 1 \leq m \leq 10^{5}) $分别代表学校一共有$n$人(编号为$1-n$),一共有$m$对微信好友。
之后的$m$行,对于第$i$行,有两个整数$a_i,b_i$代表$a_i$与$b_i$之间互为微信好友 $(1 \leq a_i,b_i \leq n, a_i \neq b_i)$。
如果隔壁班有可能全被同化为小丑,那么输出YES
。否则,无论隔壁班人的真实身份是什么情况,隔壁班都不可能全被同化为小丑,输出NO
。
判题时答案忽略大小写。
给出几组可能的情况使得隔壁班能被同化: