Problem F. The Child and Binary Tree

时间限制 7000 ms   内存限制 256 MB

Our child likes computer science very much, especially he likes binary trees.

Consider the sequence of n distinct positive integers: c1, c2, ..., cn. The child calls a vertex-weighted rooted binary tree good if and only if for every vertex v, the weight of v is in the set {c1, c2, ..., cn}. Also our child thinks that the weight of a vertex-weighted tree is the sum of all vertices' weights.

Given an integer m, can you for all s(1 ≤ s ≤ m) calculate the number of good vertex-weighted rooted binary trees with weight s? Please, check the samples for better understanding what trees are considered different.

We only want to know the answer modulo 998244353 (7 × 17 × 223 + 1, a prime number).

输入数据

The first line contains two integers n, m(1 ≤ n ≤ 105; 1 ≤ m ≤ 105). The second line contains n space-separated pairwise distinct integers c1, c2, ..., cn. (1 ≤ ci ≤ 105).

输出数据

Print m lines, each line containing a single integer. The i-th line must contain the number of good vertex-weighted rooted binary trees whose weight exactly equal to i. Print the answers modulo 998244353 (7 × 17 × 223 + 1, a prime number).

样例

样例说明

In the first example, there are 9 good vertex-weighted rooted binary trees whose weight exactly equal to 3:

c26711298f19d57f9ef181d49471d34e23d27343.png

提交

请先 登录

© 2025 FAQs Contact About