During the lesson small girl Alyona works with one famous spreadsheet computer program and learns how to edit tables.
Now she has a table filled with integers. The table consists of n rows and m columns. By ai, j we will denote the integer located at the i-th row and the j-th column. We say that the table is sorted in non-decreasing order in the column j if ai, j ≤ ai + 1, j for all i from 1 to n - 1.
Teacher gave Alyona k tasks. For each of the tasks two integers l and r are given and Alyona has to answer the following question: if one keeps the rows from l to r inclusive and deletes all others, will the table be sorted in non-decreasing order in at least one column? Formally, does there exist such j that ai, j ≤ ai + 1, j for all i from l to r - 1 inclusive.
Alyona is too small to deal with this task and asks you to help!
The first line of the input contains two positive integers n and m (1 ≤ n·m ≤ 100 000) — the number of rows and the number of columns in the table respectively. Note that your are given a constraint that bound the product of these two integers, i.e. the number of elements in the table.
Each of the following n lines contains m integers. The j-th integers in the i of these lines stands for ai, j (1 ≤ ai, j ≤ 109).
The next line of the input contains an integer k (1 ≤ k ≤ 100 000) — the number of task that teacher gave to Alyona.
The i-th of the next k lines contains two integers li and ri (1 ≤ li ≤ ri ≤ n).
Print "Yes" to the i-th line of the output if the table consisting of rows from li to ri inclusive is sorted in non-decreasing order in at least one column. Otherwise, print "No".