Problem D. Crazy Town

时间限制 1000 ms   内存限制 256 MB

Crazy Town is a plane on which there are n infinite line roads. Each road is defined by the equation aix + biy + ci = 0, where ai and bi are not both equal to the zero. The roads divide the plane into connected regions, possibly of infinite space. Let's call each such region a block. We define an intersection as the point where at least two different roads intersect.

Your home is located in one of the blocks. Today you need to get to the University, also located in some block. In one step you can move from one block to another, if the length of their common border is nonzero (in particular, this means that if the blocks are adjacent to one intersection, but have no shared nonzero boundary segment, then it are not allowed to move from one to another one in one step).

Determine what is the minimum number of steps you have to perform to get to the block containing the university. It is guaranteed that neither your home nor the university is located on the road.

输入数据

The first line contains two space-separated integers x1, y1 ( - 106 ≤ x1, y1 ≤ 106) — the coordinates of your home.

The second line contains two integers separated by a space x2, y2 ( - 106 ≤ x2, y2 ≤ 106) — the coordinates of the university you are studying at.

The third line contains an integer n (1 ≤ n ≤ 300) — the number of roads in the city. The following n lines contain 3 space-separated integers ( - 106 ≤ ai, bi, ci ≤ 106; |ai| + |bi| > 0) — the coefficients of the line aix + biy + ci = 0, defining the i-th road. It is guaranteed that no two roads are the same. In addition, neither your home nor the university lie on the road (i.e. they do not belong to any one of the lines).

输出数据

Output the answer to the problem.

样例

样例说明

Pictures to the samples are presented below (A is the point representing the house; B is the point representing the university, different blocks are filled with different colors):

fa7e81e627bcf224e4da295dc2d066adb1d83c2b.png b72e3bbc4cb89207d055b144420640b58486c09f.png

提交

请先 登录

© 2025 FAQs Contact About