
2016-2017 ACM Central Region of Russia Quarterfinal Programming Contest

We can all benefit by doing occasional "toy" programs, when artificial restrictions are set up, so that we are
forced to push our abilities to the limit. … The art of tackling miniproblems with all our

energy will sharpen our talents for the real problems.
Donald E. Knuth

Quarterfinal

Central region of Russia

Rybinsk, October 18-20-2016

A. Fried Fish..2
B. Hanoi tower..2
C. Desktop...4
D. Weather Station..5
E. Cupcakes..6
F. Vitamins...7
G. Sphenic numbers..8
H. Non-random numbers...8
I. Land Division...9
J. Architect of Your Own Fortune..10
K. Polymorphic code...12

Input file name INPUT.TXT

Output file name: OUTPUT.TXT

Memory: 64 Mb, Time: 1 sec / test

1

1

2016-2017 ACM Central Region of Russia Quarterfinal Programming Contest

A. Fried Fish

It is a well-known fact that Rybinsk once used to be a great fishing spot. People who
lived in this town had fish for breakfast, lunch, and dinner. And whatever they could
not eat themselves, they shipped to other towns and cities. Therefore, optimizing the
fish cooking process was an important task.

Let us assume that today we caught N fish of the same size. Our frying pan fit up to
K fish. Another assumption is that each side of each fish has to be fried for one
minute. As a reminder, fish is usually fried on two sides.

And now let us count the minimum time we need to fry all the fish we have.

Limitations

1 ≤ N, K ≤ 500

Input

The input file contains two integer numbers N and K – the number of fish caught and
the number of fish that can fit into our frying pan.

Output

The output file must contain one integer number – the minimum time (minutes)
needed to fry all the fish.

Examples

Input.txt Output.txt

3 2 3
4 2 4

B. Hanoi tower

It has become a good tradition to
solve the “Hanoi tower” puzzle at
programming contests in Rybinsk. We
will review the rules briefly.

There are 3 rods marked A, B, C.
Initially, N disks of different diameter
are placed on rod A: the smallest disk is
at the top, the disks below it are
ordered by diameter, in increasing order. Rods B and C are empty yet.

The goal is to move all disks from rod A to rod B, using rod C as auxiliary.

2

2

2016-2017 ACM Central Region of Russia Quarterfinal Programming Contest

At each step you can take the uppermost disk from any rod and then put it either on
an empty rod or on a rod where the diameter of the uppermost disk is greater than the
diameter of the disk taken.

Many books on programming give a recursive solution of this task. Here is a sample
procedure in Pascal.

Procedure Hanoi (X, Y, Z: char; N: integer);

Begin

 If N>0 then

 Begin

 Hanoi (X, Z, Y, N-1);

 Writeln(‘Disk ’, N, ‘ from ‘, X, ‘ to ‘, Y);

 Hanoi (Z, Y, X, N-1)

 End

End;

Your task is to write a program that will determine the number of the move, after
which the disks for the first time after the start of the game are distributed equally
between the rods.

Input

The input file contains an integer N – the number of disks.

Output

The output file must contain an integer number – the number of the move, after
which the disks for the first time after the start of the game are distributed equally
between the rods.

Limitations

1 <= N <=300 , N mod 3 = 0

Examples

Input Output
3 6

6 9

3

3

2

2016-2017 ACM Central Region of Russia Quarterfinal Programming Contest

C. Desktop

Vasily is a college student who likes to keep everything in order. One of his hobbies
is software. Yesterday he installed a new operating system Windows 999999. The key
difference between the new system and Windows XP is that Windows 999999 has
999,999 pre-installed utilities and after the installation of the system, the desktop is
absolutely empty.

Vasily wants to place the maximum number of shortcuts to the utilities on his
desktop. His computer screen is a grid sized h × w and the icons are squares sized 2 × 
2. Icons must be positioned so that their corners match the borders of grid cells. They
can also overlap each other, so the bottom icon will be partly covered by the top one.
For comfort, Vasily decided that at least half of an icon (2 cells) must be visible;
otherwise it would be hard to click on it. Now Vasily wants to know the maximum
number of icons that can be placed on his desktop and the appropriate positioning
pattern.

Limitations

1 ≤ h, w ≤ 500

Input

The first line in the input file contains two integer numbers h and w , representing the
height and the width of Vasily’s computer screen.

Output

The first line in the output file must contain the number N – the maximum number of
icons that can be fitted on Vasily’s desktop considering the conditions listed above. If
N>0, the next N lines must contain pairs of numbers representing the coordinates of
the upper right corners of the icons (line number and column number). The icons will
be placed in the same order as they are listed, so each subsequent icon might lap over
some of the previously listed icons.

Examples

Input.txt Output.txt

2 4 3
1 1
1 2
1 3

4

4

2016-2017 ACM Central Region of Russia Quarterfinal Programming Contest

D. Weather Station

Albert is a well-known inventor. He’s the one who designed an electronic weather
station that periodically track all kinds of weather parameters and records the results
of its measurements. While scanning the records made by the weather station, Albert
discovered one important omission: wind direction data were recorded in one line
without any separator characters. Albert became curious how many different
solutions there would be if he tried to restore the original sequence of measurements.

The inventor wanted you to know that the station distinguishes eight different wind
directions and encodes each one of them with one or two characters. In addition, he
has drawn a picture with wind direction notations used by the weather station.

Your task is to write a program that will calculate the number
of original sequences for a specific record based on weather
station data. Albert realizes that the resulting number may be
quite large, so your task is merely to calculate the value
modulo 109 + 7.

Limitations

The length of the input line does not exceed 105.

Input

The input file consists of a single line that contains a record made by the weather
station. The record is a line of wind direction values containing characters N, S, W,
and E.

Output

Output file must contain integer number of possible solutions modulo 109 + 7.

Examples

Input.txt Output.txt

NEWS 2
EWNS 1

Note
The line in the first example has two solutions: {N, E, W, S} and {NE, W, S}.

The line in the second example has one solution: {E, W, N, S}.

5

5

2016-2017 ACM Central Region of Russia Quarterfinal Programming Contest

E. Cupcakes

In a college dormitory, somebody posted an announcement saying there would be a
table with K cupcakes (K>=0) on the first floor of the building. Students thought it
was a great idea and they lined up in a long queue to get a cupcake.

For each student number i, there is a pre-defined maximum number of cupcakes (ai)
he or she could eat in one go. However, it does not mean every student will eat the
maximum number of cupcakes. The actual quantity of cupcakes eaten could be any
number in the range from 1 to the ai. Once a student has taken his or her turn and
eaten the cupcakes, he or she goes back to the end of the queue. This continues until
all the cupcakes are gone. The first student who finds no cupcakes on the table when
it is his or her turn will have to clean up after the party (if K=0, the first student in the
queue has to clean the table).

Among the students, there is a Greedy Guy, who always eats exactly ax cupcakes (if
the number of cupcakes on the table is smaller than ax, then he eats up all that is left).
It is very easy to find out who the Greedy Guy is: his ax is greater than all other ai.

All the students (except the Greedy Guy) want the Greedy Guy to clean up. Your task
is to help them determine if it is possible.

Limitations

2 ≤ N ≤ 105,  0 ≤ K ≤ 108, 1 ≤ ai ≤ 109

There is always only one single student with the maximum value of ai.

Input

The first line contains two inegers – N and K , representing the number of students
and the number of cupcakes respectively. The next line contains N integer
numbers ai, representing the maximum number of cupcakes that can be eaten by
student number i in the queue.

Output

The output is “YES” if the students can make relevant arrangements to achieve their
goal and have the Greedy Guy clean the table. Otherwise the output is “KEK.”

Examples

Input.txt Output.txt

4 3
1 2 3 2

YES

5 8
1 2 3 2 1

KEK

6

6

2016-2017 ACM Central Region of Russia Quarterfinal Programming Contest

F. Vitamins

A schoolboy named Vasya had been spending so much time on his computer that he
became colorblind. His doctor prescribed him vitamins. When Vasya bought himself
a bottle of vitamins, he found out they had to be taken three times a day – a white pill
in the morning, a red one after lunch, and a blue one before going to bed. The
problem was that all the pills were in the same bottle, and the boy could not tell the
color of the pills. After reading the directions carefully, Vasya discovered that pills of
different colors had different weights – the white ones were the heaviest, the red ones
were lighter, and the blue pills were the most lightweight. Vasya arranged all the pills
in a row and numbered them from 1 to n; then he took a pharmacy scale and started
weighing the pills. For each measurement, the boy selected two pills, put them in the
opposite weighing pans, and recorded the weighing results in a table. After m
measurements, Vasya decided he had enough information to tell the color of each
pill.Your task is to write a program that will determine the color of each pill based on
a partially filled table of measurements.

Limitations

3 ≤ n ≤ 1000, 0 ≤ m ≤ n(n-1)/2, ai ≠ bi.

Input

The first line of the input file contains integer number n – the number of pills. The
second line contains number m – the number of measurements taken. The following
m lines each contain two integer numbers ai and bi – the numbers of weighed pills
separated by characters ‘<,’ ‘>’ or ‘=,’ representing the measurement results. For
example, “2<3” means that the second pill is lighter than the third one; “2>5” means
the second pill is heavier than the fifth one; “3=4” means the third and the fourth
have the same weight.

Output

The output file must contain a single line consisting of n characters. The first
character represents the color of the first pill, the second character represents the
color of the second pill, and so on. White pills are designated as “W”, red ones as
“R” and blue ones as “B”. In addition, pills are marked with the symbol “?” in case
their color is uncertain.

Examples

Input.txt Output.txt

3
2
1<3
1>2

RBW

7

7

2016-2017 ACM Central Region of Russia Quarterfinal Programming Contest

G. Sphenic numbers

Schoolboy Vasya is interested in the problem of distinguishing prime numbers. He
has decided to develop his own testing method for it.

Unfortunately, the new algorithm has one deficiency – it yields false positive outputs
in case with so-called sphenic numbers. For those who does not know: sphenic
number is the product of exactly three distinct prime numbers.

Help Vasya write a program to distinguish sphenic numbers.

Inut

The input file contains a single number – integer n.

Limitations

30 ≤ n ≤ 10467397.

Output

The output file must contain one single line with the value “YES” (without quotation
marks) if number n is sphenic or “NO” if it is not.

Examples

Input.txt Output.txt

30 YES
40 NO
10467397 YES

8

8

2016-2017 ACM Central Region of Russia Quarterfinal Programming Contest

H. Non-random numbers

Vasya is a schoolboy who was playing around with a random number generator and
noticed that it never generates numbers with the value of a specific digit equal to the
position of that digit in the number.

Vasya became curious and he came to discover the following:

 The input accepted by the generator is one positive integer n – the
number of digits in the generated random number.

 The output is a positive integer number consisting of n digits without
leading zeroes.

 In the generated number at i position (from the left-hand side) cannot be
digit i.

For example, if we want the generator to produce a single-digit number, it will
generate any single-digit number except 0 or 1. In case with a double-digit number,
the output will be anything except 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 22, 32, 42,
52, 62, 72, 82 or 92.

The schoolboy decided to find out how many different numbers can be generated for
any given n-digit number.

Your task is to write a program that will help the schoolboy to solve this problem.

Limitations

1 ≤ n ≤ 100.

Input

The input file contains single integer n – the number of digits in the generated
random number.

Output

The output file must contain one single integer – the number of possible random n-
digit numbers. The output must have no leading zeroes.

Examples

Input.txt Output.txt

1 8
2 72
12 344373768000

9

9

2016-2017 ACM Central Region of Russia Quarterfinal Programming Contest

I. Land Division

Neleppo is a town lying on the border of two enemy states. On the map, it looks like
an N-sided convex polygon. No three vertices of the polygon are on the same line. To
settle the numerous disputes and avoid further victims, the two states have signed an
agreement which divides the town in two parts. One part must be a K-sided polygon
and the other, an M-sided polygon. These parts will belong to different states. A fence
must be built between the parts, stretching from one point on the town border to
another such point. To minimize the costs, the fence must be linear.

Your task is to write a program that will calculate the minimum length of the fence
satisfying the following conditions.

Limitations

2 < N, M, K < 100

-1000 ≤ Xi, Yi ≤ 1000

Input

The first line of the input file contains numbers N, M, and K separated by a space.
The next N lines each contain two integers Xi andYi representing coordinates of the
polygon’s vertices. The vertices are listed in the clockwise order.

Output

Length of the border fence accurate to three decimal places, or −1 if there is no
solution.

Example

Input.txt Output.txt

4 4 4
0 0
1 1
2 1
1 0

0.707

Explanations for the example shown in the figure below.

10

10

2016-2017 ACM Central Region of Russia Quarterfinal Programming Contest

Fig. 1

X

Y

0

1

2

-1

11

11

2016-2017 ACM Central Region of Russia Quarterfinal Programming Contest

J. Architect of Your Own Fortune

Vasya is a schoolboy who rides a trolley bus and then a bus to get to school. He’s
always very happy to get a “lucky ticket,” which means the total of the first three
digits in the ticket number equals the total of the last three digits. However, Vasya has
been down on his luck ever since the beginning of the new school year – over the past
month, he hardly had any lucky tickets at all.

Vasya thought this over and decided to take control of the situation. Upon reviewing
his recent tickets, he realized he can produce several lucky numbers by combining
trolley bus tickets with bus tickets. To that end, the schoolboy had to take two tickets,
fold them in half along the vertical axis and join halves of different tickets together.
The first three digits of the new “super lucky ticket” are the three digits on the left-
hand side of the ticket for one mode of transport, and the last three digits are the three
digits on the right-hand side of the ticket for the other mode of transport.

Example: let us assume that Vasya has a trolley bus ticket with the number 123456
and a bus ticket with the number 789222. They can be combined either as 123222 or
as 789456. The first one of these two combinations is super lucky.

Your task is to write a program that will help produce the maximum number of super
lucky combinations from the tickets available, assuming each ticket can only be used
in one combination.

Limitations

1 ≤ n, m ≤ 100.

Input

The first line of the input file contains two integer numbers n and m separated by a
space. The second line of the input file contains n six-digit integer numbers separated
by a space, representing numbers of bus tickets. The third line of the input file
contains m six-digit integer numbers separated by a space, representing numbers of
trolley bus tickets.

Output

The first line of the output file must contain integer number k – the maximum
possible number of super lucky combinations. The following k lines must contain
these super lucky combinations. Each line with a super lucky combination must start
with the Latin letters “AT” if the combination begins with numbers from a bus ticket
and ends with numbers from a trolley bus ticket; otherwise the line must start with the
letters “TA.” The letters must be followed by two six-digit numbers separated by a
space, representing the numbers of the relevant tickets.

12

12

2016-2017 ACM Central Region of Russia Quarterfinal Programming Contest

Examples

Input.txt Output.txt

2 2

123456 111222

141204 555000

2

TA 555000 123456

TA 141204 111222

13

13

2016-2017 ACM Central Region of Russia Quarterfinal Programming Contest

K. Polymorphic code

Many computer viruses and worms use polymorphic code to hide their presence.
Polymorphic code is a code each copy of which has a different set of operators, but
performs the same function. Usually, polymorphic code is used to decrypt the main
body of the virus or worm.

A kind of polymorphism is virus source code "psevdocompilation", when random
virus body commands are replaced by an equivalent sequence of commands.

There is a code snippet compiled by "psevdocompiler" working according to the
following algorithm:

1. If the code length exceeds some constant, then the algorithm stops

2. If the code length does not exceed, then a random command chosen and replaced
by a sequence of commands.

The following commands can be used in a polymorphic code:

Command Psevdocode Command description

MOV Rx, Ry Rx  Ry Move data contained in the Ry register
into the Rx register

MOV Rx, const Rx  const Load constant into the Rx register

ADD Rx, Ry Rx  (Rx + Ry) mod 256 Addition of register Rx and Ry modulo
256. The result is placed in the Rx
register

ADD Rx, const Rx  (Rx + const) mod
256

Adding to the register Rx constant
const modulo 256

XOR Rx, Ry Rx  Rx  Ry Exclusive disjunction of data contained
in Rx and Ry registers. The result is
placed in the Rx register.

XOR Rx, const Rx  Rx  const Exclusive disjunction of data contained
in Rx register and constant

PUSH Rx STop  STop + 1

Stack[STop]  Rx

Adds data contained in the Rx register
to the stack

POP Rx Rx  Stack[STop] Remove the top of the stack into the
Rx register

14

14

2016-2017 ACM Central Region of Russia Quarterfinal Programming Contest

STop  STop – 1

Rx or Ry denotes one of the registers R1, R2, ..., R8, STop – top of the stack, and a
Stack [] – the stack itself. Constants “const “are hexadecimal constants in the range
0 ... FF.

To convert, "psevdocopmiler" uses the following replacements:

Replacable Command Replacement Comment

MOV Rx, Ry PUSH Ry

POP Rx

MOV Rx, const XOR Rx, Rx

ADD Rx, const

ADD Rx, Ry PUSH Rz

MOV Rz, Ry

ADD Rx, Rz

POP Rz

Rz  Rx

ADD Rx, const PUSH Rz

MOV Rz, const

ADD Rz, Rx

MOV Rx, Rz

POP Rz

Rz  Rx

XOR Rx, Ry PUSH Rz

MOV Rz, Ry

XOR Rz, rndConst

XOR Rx, Rz

MOV Rz, rndConst

XOR Rx, Rz

POP Rz

Rz  Rx

rndConst = Random(01…
FF)

XOR Rx, const PUSH Rz Rz  Rx

15

15

2016-2017 ACM Central Region of Russia Quarterfinal Programming Contest

XOR Rz, const

XOR Rx, Rz

POP Rz

XOR Rx, Rz

PUSH Rx PUSH Rx

MOV Rx, Rz

POP Rz

PUSH Rz

XOR Rx, Rz

XOR Rz, Rx

XOR Rx, Rz

Rz  Rx

POP Rx MOV Rx, Rz

POP Rz

XOR Rx, Rz

XOR Rz, Rx

XOR Rx, Rz

Rz  Rx

Your task will be to generate the source code based on the code formed by
"psevdocompiler”. If there are several such codes, find the shortest one.

Limitations

The length of the program formed by "psevdocompiler" does not exceed 50,000
commands:

0 <n ≤ 50,000.

Input

The first line contains integer n – the number of commands. Then follow n
commands. Each command is placed on a separate line, in capital letters, without
leading spaces. Parameters are separated from the command by one space. If the
command contains two parameters, then a comma and a space is placed after the first
parameter.

16

16

2016-2017 ACM Central Region of Russia Quarterfinal Programming Contest

Output

The first line of the output file contains integer k – the number of commands in the
source code. Then k-commands of restored source code are followed in the same
format, which they are specified in the input file.

Examples

Input.txt Output.txt

5

PUSH R2

PUSH R6

POP R2

ADD R3, R2

POP R2

1

ADD R3, R6

5

PUSH R5

MOV R5, 3E

ADD R5, R3

MOV R3, R5

POP R4

5

PUSH R5

MOV R5, 3E

ADD R5, R3

MOV R3, R5

POP R4

17

17

2016-2017 ACM Central Region of Russia Quarterfinal Programming Contest

Rybinsk State Aviation Technical University

16,1,2,15,14,3,4,13,12,5,6,11,10,7,8,9

12,1,2,11,10,3,4,9,8,5,6,7

Program Committee

 Sergey G. Volchenkov,

 Vladimir N. Pinaev,

 Michael Y. Kopachev,

 Andrey Mirzoyan,

 Sergei Dobrikov,

 Dmitry Shalaev

© RSATU, 2016 (http://www.rsatu.ru)

18

18

http://www.rsatu.ru/

	A. Fried Fish
	B. Hanoi tower
	C. Desktop
	D. Weather Station
	E. Cupcakes
	F. Vitamins
	G. Sphenic numbers
	H. Non-random numbers
	I. Land Division
	J. Architect of Your Own Fortune
	K. Polymorphic code

