Problem L. Problem L. Graph Theory Homework

时间限制 1000 ms   内存限制 256 MB

There is a complete graph containing $n$ vertices, the weight of the $i$-th vertex is $w_i$.
The length of edge between vertex $i$ and $j$ $(i \neq j)$ is $\lfloor \sqrt{|w_i - w_j|} \rfloor$.
Calculate the length of the shortest path from $1$ to $n$.
 

输入数据

The first line of the input contains an integer $T$ $(1 \le T \le 10)$ denoting the number of test cases.
Each test case starts with an integer $n$ $(1 \le n \le 10 ^ 5)$ denoting the number of vertices in the graph.
The second line contains $n$ integers, the $i$-th integer denotes $w_i$ $(1 \le w_i \le 10 ^ 5)$.
 

输出数据

For each test case, print an integer denoting the length of the shortest path from $1$ to $n$.
 

样例输入

复制
1
3
1 3 5

样例输出

提交

请先 登录

© 2025 FAQs Contact About