Problem L. Sum of Log

时间限制 1000 ms   内存限制 1024 MB

Given two non-negative integers $$$X$$$ and $$$Y$$$, determine the value of $$$$$$ \sum_{i=0}^{X}\sum_{j=[i=0]}^{Y}[i\&j=0]\lfloor\log_2(i+j)+1\rfloor $$$$$$ modulo $$$10^9+7$$$ where

  • $$$\&$$$ denotes bitwise AND;
  • $$$[A]$$$ equals 1 if $$$A$$$ is true, otherwise $$$0$$$;
  • $$$\lfloor x\rfloor$$$ equals the maximum integer whose value is no more than $$$x$$$.

输入数据

The first line contains one integer $$$T\,(1\le T \le 10^5)$$$ denoting the number of test cases.

Each of the following $$$T$$$ lines contains two integers $$$X, Y\,(0\le X,Y \le 10^9)$$$ indicating a test case.

输出数据

For each test case, print one line containing one integer, the answer to the test case.

样例

样例说明

For the first test case:

  • Two $$$(i,j)$$$ pairs increase the sum by 1: $$$(0, 1), (1, 0)$$$
  • Six $$$(i,j)$$$ pairs increase the sum by 2: $$$(0, 2), (0, 3), (1, 2), (2, 0), (2, 1), (3, 0)$$$

So the answer is $$$1\times 2 + 2\times 6 = 14$$$.

提交

请先 登录

© 2025 FAQs Contact About